Discrete group

Concepts in group theory
category of groups
subgroups, normal subgroups
group homomorphisms, kernel, image, quotient
direct product, direct sum
semidirect product, wreath product
Types of groups
simple, finite, infinite
discrete, continuous
multiplicative, additive
cyclic, abelian, dihedral
nilpotent, solvable
list of group theory topics
glossary of group theory

In mathematics, a discrete group is a group G equipped with the discrete topology. With this topology G becomes a topological group. A discrete subgroup of a topological group G is a subgroup H whose relative topology is the discrete one. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not.

Any group can be given the discrete topology. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the category of groups and the category of discrete groups. Discrete groups can therefore be identified with their underlying (non-topological) groups. With this in mind, the term discrete group theory is used to refer to the study of groups without topological structure, in contradistinction to topological or Lie group theory. It is divided, logically but also technically, into finite group theory, and infinite group theory.

There are some occasions when a topological group or Lie group is usefully endowed with the discrete topology, 'against nature'. This happens for example in the theory of the Bohr compactification, and in group cohomology theory of Lie groups.

Contents

Properties

Since topological groups are homogeneous, one need only look at a single point to determine if the topological group is discrete. In particular, a topological group is discrete if and only if the singleton containing the identity is an open set.

A discrete group is the same thing as a zero-dimensional Lie group (uncountable discrete groups are not second-countable so authors who require Lie groups to satisfy this axiom do not regard these groups as Lie groups). The identity component of a discrete group is just the trivial subgroup while the group of components is isomorphic to the group itself.

Since the only Hausdorff topology on a finite set is the discrete one, a finite Hausdorff topological group must necessarily be discrete. It follows that every finite subgroup of a Hausdorff group is discrete.

A discrete subgroup H of G is cocompact if there is a compact subset K of G such that HK = G.

Discrete normal subgroups play an important role in the theory of covering groups and locally isomorphic groups. A discrete normal subgroup of a connected group G necessarily lies in the center of G and is therefore abelian.

Other properties:

Examples

See also

References